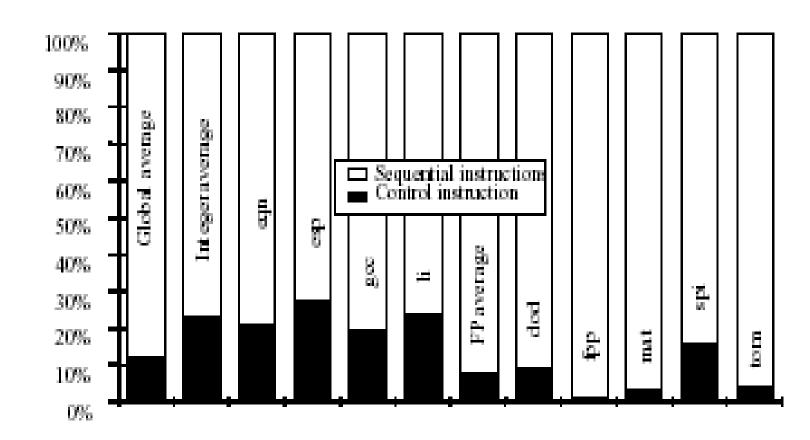
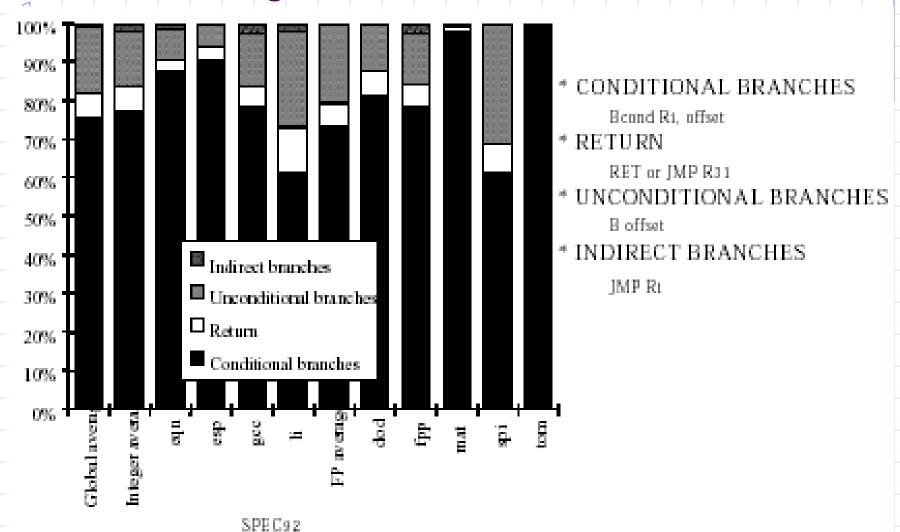
Univers idade Federal do Rio de Janeir o DCC/IM

Arquitetura de Computadores II


Predição de Desvio

Gabriel P. Silva

Desvios:


 Instruções que podem alterar o fluxo de execução das instruções de um programa

_	Condicional	Incondicional
Direto	if - then- else for loops (bez, bnez, etc)	procedure calls (jal) goto (j)
Indireto		return (jr) virtual function lookup function pointers (jalr)

SPEC92

Yeh and Patt

- Predição de desvio:
 - Aumenta o número de instruções disponíveis para o despacho.
 - Aumenta o paralelismo a nível de instrução.
 - Permite que trabalho útil seja concluído enquanto se espera pela resolução do desvio.

Predição de Desvio

- Predizer o resultado de um desvio
 - Direção:
 - ◆ Tomado / Não Tomado
 - Preditores de Direção
 - Endereço Alvo:
 - Tomado: PC+offset / Não Tomado: PC+4
 - Preditores de Endereço Alvo
 - Branch Target Address Cache (BTAC) ou Branch Target Buffer (BTB)

Estratégias de Predição de Desvio

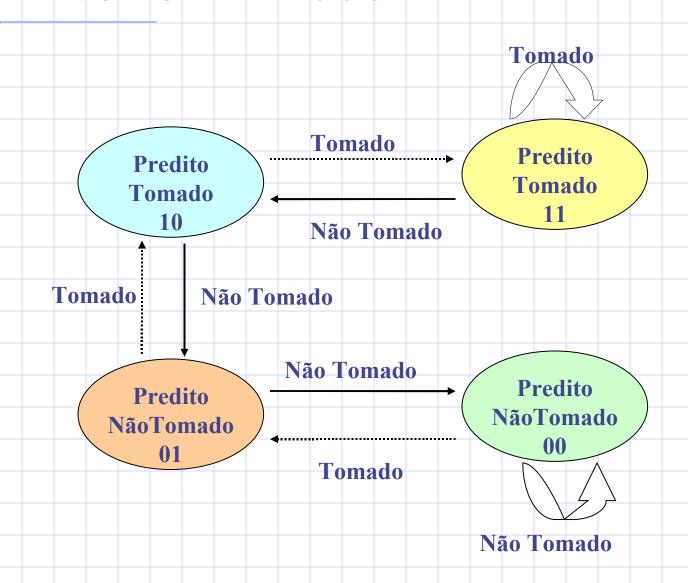
- As estratégias de predição de desvio podem ser dividas em duas categorias básicas:
 - Estratégia de predição de desvio estática por meio de mecanismos de "software".
 - Decidida a priori pelo compilador.
 - Estratégia de predição de desvio dinâmica por meio de mecanismos de "hardware".
 - *As decisões de predição podem ser alteradas durante a execução do programa.

Predição Estática do Desvio

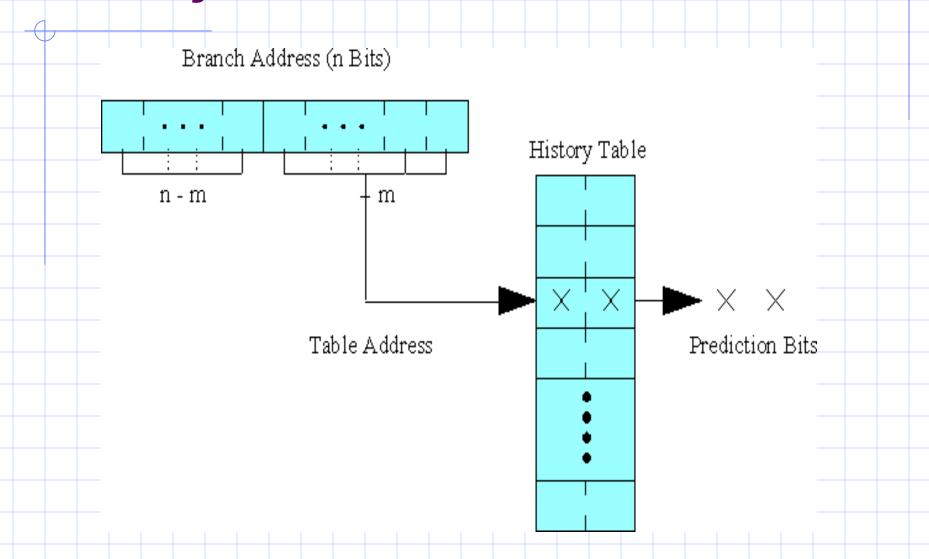
- Três abordagens podem ser adotadas:
 - Assumir que todos os desvios são tomados ("branch taken");
 - Os desvios para trás são assumidos como tomados ("branch taken") e os desvios para frente são assumidos como não tomados ("branch not taken");
 - Fazer a predição com base em resultados coletados de experiências de "profile" realizadas anteriormente.

Predição Dinâmica do Desvio

- Pequena memória endereçada pela parte baixa do endereço das instruções de desvio;
- A memória contém 1 bit (bit de predição) que diz se o desvio foi tomado ou não da última vez;
- Se a predição for errada, o bit correspondente é invertido na memória
- Problemas:
 - Instruções de desvio diferentes podem mapear para uma mesma posição do buffer
 - O esquema pode falhar quando a decisão do desvio se alterna a cada execução


Preditores de 1-bit x 2-bits

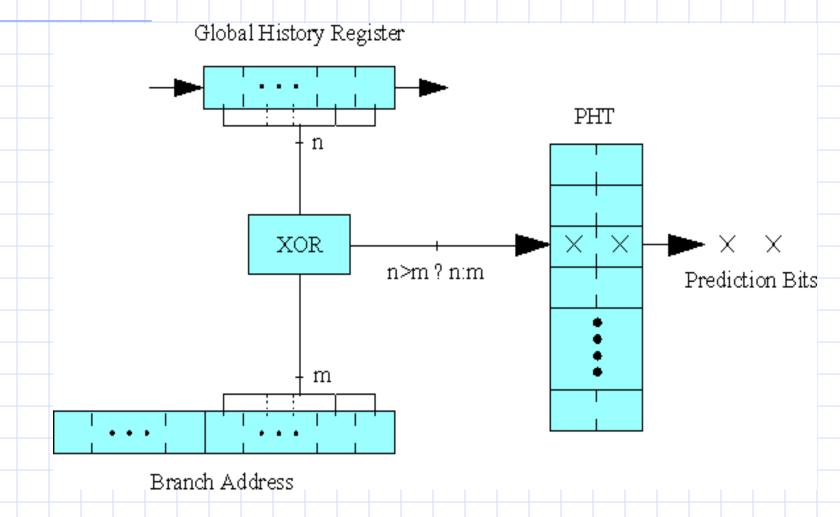
- Um preditor de 1-bit prediz corretamente um desvio ao final de uma iteração de um loop, enquanto o loop não termina.
- Em loops aninhados, um preditor de 1-bit irá causar duas predições incorretas para o loop interno:
 - Uma vez no final do loop, quando a iteração termina o loop ao invés de ir para o começo do loop, e
 - Uma vez quando a primeira iteração do loop for reiniciada, quando ele prediz o término do loop ao invés do começo do loop.
- Este erro duplo em loops aninhados é evitado por um esquema de predição de dois bits.
- Preditor de 2-bits: Uma predição deve errar duas vezes antes de ser alterada quando um preditor de 2-bits é utilizado.


Predição de Desvio Bimodal

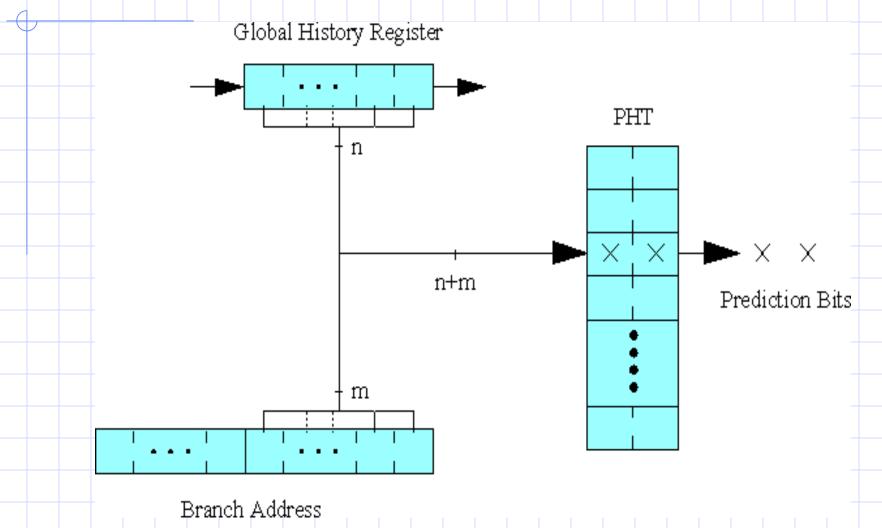
- O preditor de dois bits (bimodal) é
 essencialmente um contador de dois bits com
 valores entre 0 e 3.
- Quando o contador é maior ou igual ao valor
 2, o desvio é predito como tomado; em caso contrário é predito como não tomado.
- O contador é incrementado em um devio tomado e decrementado em um desvio não tomado.
- Demonstra-se que um buffer de 2 bits com 4 K entradas tem um desempenho similar que um buffer com um número infinito de entrada e usando *n* bits para predição nos programa de avaliação do SPEC92.

Diagrama de Estados do Preditor Bimodal

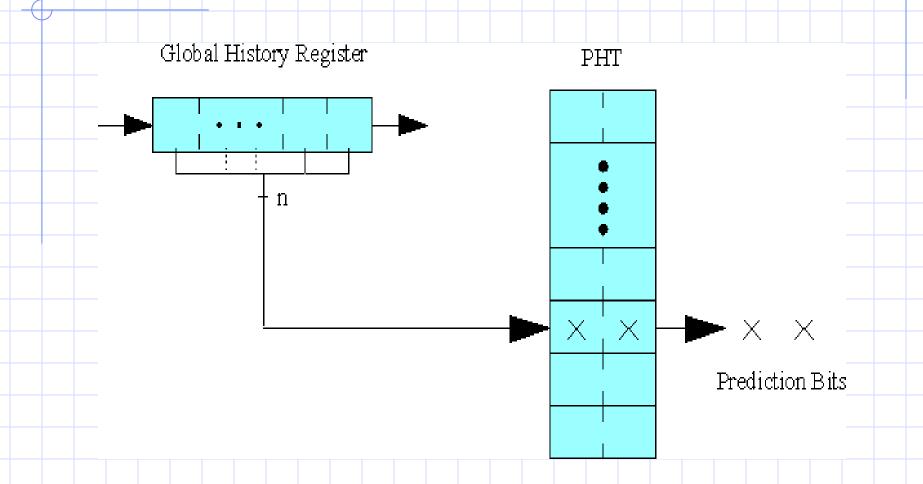
Predição Bimodal


Preditor por Correlação

- O preditor de 2-bits usa apenas o comportamento mais recente de um único desvio para predizer o comportamento futuro daquele desvio.
- Correlações entre diferentes instruções de desvio não são levadas em conta.
- Preditores baseados em correlação ou preditores correlacionados usam também o comportamento de outros desvios para fazer uma predição, ao invés de apenas aquele que estamos tentando predizer.
- Este raciocínio levou ao desenvolvimento dos preditores correlacionados.


Preditor por Correlação

- Enquanto os preditores de 2-bits usam apenas o seu próprio histórico, os preditores correlacionados também usam o histórico de desvios vizinhos.
- Notação: um preditor (n,k) usa o comportamento dos últimos n desvios para escolher entre 2ⁿ preditores de desvios, cada qual é um preditor de k-bits para um único desvio.
- Registrador de Histórico de Desvio (BHR): O histórico global dos n desvios mais recentes podem ser gravados em um registrador de deslocamendo com n-bits, onde cada bit registra e o devio foi tomado ou não.

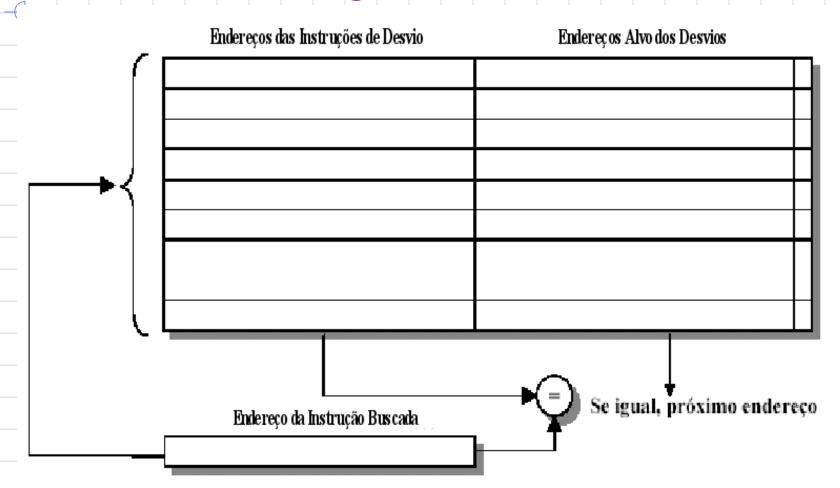

GShare

GSelect

Preditores gselect e gshare

- Preditor gselect: concatena alguns bits de mais baixa ordem do endereço do desvio e os bits do registrador de histórico global (BHR)
- Preditor gshare: Utiliza o OU exclusivo bit a bit de parte do endereço de desvio com os bits do registrador de histórico como funçao HASH.
- McFarling: gshare é ligeiramente melhor que o gselect

<u>E</u>	Branch Address	BHR	gselect4/4	gshare8/8
(0000000	0000001	0000001	0000001
(0000000	00000000	00000000	00000000
	1111111	00000000	11110000	11111111
	11111111	10000000	11110000	01111111


Fatores que Influenciam a Predição

- Aliasing
 - Mais de um desvio pode utilizar a mesma entrada na BHT/PHT
- Tempo de treinamento
 - É necessário haver desvios suficientes para um padrão ser descoberto
 - É necessário algum tempo até se entrar em um estado estável
- Histórico "Errado"
 - Tipo incorreto de histórico para o desvio
- Troca de contexto
 - "Aliasing" causado por desvios de diferentes programas

Branch Target Cache

- Contador de programas (PC) da instrução no estágio de busca é usado para indexar a branch target cache (BTC).
- Quando ocorre um acerto na BTC, a instrução é considerada como um desvio com predição a ser tomado. Então:
 - A BTC armazena o PC correspondente à instrução alvo do desvio;
 - Esse PC é usado na busca da próxima instrução;
 - Se a predição de desvio tomado se mostrar incorreta, a instrução buscada é anulada, a operação de busca é reiniciada e a entrada correspondente na BTC é invalidada.

Branch Target Cache

Variações na Branch Target Cache

- Armazenamento da instrução alvo e não do endereço da instrução alvo:
 - Instruções de desvio gastando zero ciclos ("branch folding") podem ser produzidas uma vez que a instrução obtida do cache pode ser utilizada para substituir a instrução de desvio no pipeline
- Predição de desvios cujo endereço varia durante a execução do programa
 - Implementação de uma pilha para a predição do endereço de retorno.

Desvios Especiais

- Chamadas e Retorno de Procedimento
 - Chamadas são sempre tomadas
 - O endereço de retorno quase sempre é conhecido
- Return Address Stack (RAS)
 - Na chamada de um procedimento, colocar o endereço da instrução seguinte na pilha de endereço de retorno
 - Utilizado em estruturas de "case" e retorno de rotinas